Linear Equations in the Stone-čech Compactification of N

نویسندگان

  • Neil Hindman
  • Amir Maleki
  • Dona Strauss
چکیده

Let a and b be distinct positive integers. We show that the equation u + a · p = v + b · p has no solutions with u, v ∈ βN and p ∈ βN\N. More generally, we show that if (S,+) is any commutative cancellative semigroup and S has no nontrivial solutions to n · s = n · t for n ∈ N and s, t ∈ S, then the equation u + a · p = v + b · p has no solutions with u, v ∈ βS and p ∈ βS\S. We characterize completely the Abelian groups for which such an equation can be satisfied. We also show that if S can be embedded in the circle group T, then the equation a · p + u = b · p + v has no solutions with u, v ∈ βS and p ∈ βS\S. Finally, we investigate solutions to the equation a1 · p+ a2 · p+ . . .+ an · p = b1 · p+ b2 · p+ . . .+ bm · p where p ∈ βN\N and a1, a2, . . . , an, b1, b2, . . . , bm ∈ N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong shape of the Stone-Čech compactification

J. Keesling has shown that for connected spaces X the natural inclusion e : X → βX of X in its Stone-Čech compactification is a shape equivalence if and only if X is pseudocompact. This paper establishes the analogous result for strong shape. Moreover, pseudocompact spaces are characterized as spaces which admit compact resolutions, which improves a result of I. Lončar.

متن کامل

On matrix points in Čech–Stone compactifications of discrete spaces

We prove the existence of (2 , τ)-matrix points among uniform and regular points of Čech–Stone compactification of uncountable discrete spaces and discuss some properties of these points.

متن کامل

Degenerate Fibres in the Stone-čech Compactification of the Universal Bundle of a Finite Group

Applied to a continuous surjection π : E → B of completely regular Hausdorff spaces E and B, the Stone-Čech compactification functor β yields a surjection βπ : βE → βB. For an n-fold covering map π, we show that the fibres of βπ, while never containing more than n points, may degenerate to sets of cardinality properly dividing n. In the special case of the universal bundle π : EG → BG of a p-gr...

متن کامل

Algebra and Topology in the Stone-Čech Compactification

The Stone-Čech compactification of discrete semigroups is a tool of central importance in several areas of mathematics, and has been studied extensively. We think of the Stone-Čech compactification of a discrete abelian semigroup G as the set βG of ultrafilters on G, where the point x ∈ G is identified with the principal ultrafilter {A ⊆ G ∣∣x ∈ A}, and the basic open sets are those of the form...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000